

Time Adjustment Analysis

The Auditors' Way of Defining the Overall Market Trend

Ning Zheng

ssification: Protecte

Main Topics Today

- Who am I ?
- What is and Why do we need Time Adjustment ?
- What Approaches are available for Time Adjustment Analysis ?
- How Deep are we landing on the Time Adjustment Analysis ?
- What Tool(s) do Auditors use for Time Adjustment Analysis ?

About Me

2006

Moved to Edmonton, Year 1 in Canada

• Lakeland College, Appraisal and Assessment Program

2008

City of Edmonton, Assessment and Taxation

Assessor in multiple sectionsModelling as main job responsibility

2012

2014

2042

City of Edmonton, Assessment and Taxation

Earned AMAA designationEarned AACI designation

Municipal Affairs, Assessment Audit

Auditor

Senior Auditor

• Acting Audit Manager

36 Years of being a Canadian

• Earning Time Adjusted OAS

Time Adjustment

What is Time Adjustment?

- an **adjustment** is done to account for **changes** in market prices since the date of the sale. (Source: UBC, "Foundations of Real Estate Appraisal")

Why do we need Time Adjustment?

- Legislation required
- Best practice required

What is Time Adjustment Analysis ?

- Identify individual changes differs from approaches applied
- Changes have to be processed using available tools and programs to produce output
- Output Monthly Time Adj Factors: Meaningful Overall Market Trend for Mass Appraisal

Meaningful means...

- Make sense to majority of your audiences
- Can be easily used to predict the future market

Approaches Used in Time Adjustment Analysis

- Resales / Paired Sales
- Multiple Regression Analysis
- Sales to Assessment Ratio Analysis / Unit Value Analysis \checkmark

Depth of Time Adjustment Analysis

Depends on the purpose of the analysis, for each property group:

Demo – Auditor's Program

- Data used: Fort Saskatchewan 2020 assessment year
- This dataset is not the final ASSET submission, used for this presentation only
- The program is named Annual Audit Application, acronymed as AAA
- It was developed using JavaFX platform and Apache Derby database. It is currently a standalone application which doesn't support database sharing
- A web based version of this program is under development, hopefully put on test in 2 or 3 years from now

A

No Post Facto Sales	Added Post Facto Sales
Linear Regression Analysis	1.96 Image: Regression Analysis 0 0
Model Summary Formular of current analysis (y = 1.056 +001 * x	-1.96
Order Coefficients T-Test Values 1 1.056 279.565 2 001 -5.529 Choose the Coefs to apply: ✓ 1	Order Coefficients T-Test Values 1 1.054 278.679 2 001 -4.661
Apply Chosen Coefficients Close OVERALL RATIO STATS of Assessor's Analysis :	Apply Chosen Coefficients Close OVERALL RATIO STATS of Assessor's Analysis :
OVERALL 1500 .982 5.045 1.01 5.18 OVERALL RATO STATS of Auditor's Analysis : Counts Median ASX AbsDevMedA PRD COD OVERALL 1500 986 5.064 1.01 5.24	OVERALL 1590 .981 5.032 1.01 5.20 OVERALL RATO STATS of Auditor's Analysis : Counts Median ASI: AbsDevMedA PRD COD OVERALL 1590 980 5.052 - 34 5.32
TimeAdjFactor @ Jul 1,2017 - 3.550%	TimeAdjFactor @ Jul 1,2017 -2.868%

Example of Time Adjustment Plot without Best Fit Line applied.

Example of Time Adjustment Plot with Best Fit Line applied.

Difference between July 1 2018 and July 1 2019: -1.94%

Example of Multi-trend Analysis

assitication: Protecte

Example of Time Adjustment Plot without Best Fit Line applied.

LOESS Smoothing Curve

Loess Regression is the most common method used to smoothen a volatile time series. It is a non-parametric methods where least squares regression is performed in localized subsets, which makes it a suitable candidate for smoothing any numerical vector. The **span** value ranges from 0 to 1, controls the degree of smoothing. So, the greater the value of span, more smooth is the fitted curve.

fication: Protected

Take-aways Today...

- Conduct Time Adjustment Analysis on the MUNICIPAL level by property groups,
- Apply filters for outliers before diving into time analysis,
- For those munis require only ONE year of SFD sales, use THREE years of sales instead to curtail the impact from two months of sales loss caused by COVID,
- Rely on the Best Fit Line in linear regression analysis, or
- Using LOESS curve in Multi-trend analysis to determine turning points if needed, and
- DON'T try to move the turning points up and down AS YOU WISH you will definitely lose the statistical reliability to your results.

